\qquad

Section 18.2 Review

Section 18.2 Summary

- The boundary of a surface S is denoted ∂S.
- The boundary orientation of ∂S is defined as follows: If you walk along the boundary in the positive direction with your head pointing in the normal direction, then the surface is on your left.
- State Stokes' Theorem:
- The definition of vector potential is: \qquad
- Surface independence: If $\boldsymbol{F}=\operatorname{curl}(\boldsymbol{A})$, then the flux of \boldsymbol{F} through a surface S depends only on the oriented boundary ∂S and not on the surface itself. Verify this using Stokes' theorem:
- If S is closed and $\boldsymbol{F}=\operatorname{curl}(\boldsymbol{A})$, then

$$
\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}=
$$

Section 18.2 Additional Exercises

1. Verify Stokes' Theorem for the vector field $\boldsymbol{F}=\left\langle y, x, x^{2}+y^{2}\right\rangle$ where S is the upper hemisphere $x^{2}+y^{2}+z^{2}=$ $1, z \geq 0$ with an upward-pointing normal.
2. Calculate $\operatorname{curl}(\boldsymbol{F})$ and then apply Stokes' Theorem to compute the flux of $\operatorname{curl}(\boldsymbol{F})$ through the given surface using a line integral. For $\boldsymbol{F}=\left\langle y z,-x z, z^{3}\right\rangle$, that part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the two planes $z=1$ and $z=3$ with upward-pointing unit normal vector.
3. Apply Stokes' theorem to evaluate $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ by finding the flux of curl (\boldsymbol{F}) across an appropriate surface. For $\boldsymbol{F}=\langle y,-2 z, 4 x\rangle, C$ is the boundary of that portion of the plane $x+2 y+3 z=1$ that is in the first octant of space, oriented counter clockwise as viewed from above.
4. Let S be the portion of the plane $z=x$ contained in the half-cylinder of radius R depicted in Figure 17 . Use Stokes' theorem to calculate the circulation of $\boldsymbol{F}=\langle z, x, y+2 z\rangle$ around the boundary of S (a halfellipse) in the counterclockwise direction when viewed from above. Hint: Show that $\operatorname{curl}(\boldsymbol{F})$ is orthogonal to the normal vector to the plane.

FIGURE 17
5. Let $\boldsymbol{F}=\left\langle y^{2}, x^{2}, z^{2}\right\rangle$. Show that

$$
\int_{C_{1}} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C_{2}} \boldsymbol{F} \cdot d \boldsymbol{r}
$$

for any two closed curves lying on a cylinder whose central axis is the z-axis.

FIGURE 21
6. You know two things about a vector field \boldsymbol{F} :
(i) \boldsymbol{F} has a vector potential \boldsymbol{A} (but \boldsymbol{A} is unknown).
(ii) The circulation of \boldsymbol{A} around the unit circle (oriented counter-clockwise) is 25 .

Determine the flux of \boldsymbol{F} through the surface S in Figure 22, oriented with an upward-pointing normal.

FIGURE 22 Surface \mathcal{S} whose boundary is the unit circle.
7. Assume that f and g have continuous partial derivatives of order 2. Prove that

$$
\oint_{\partial S} f \nabla(g) \cdot d \boldsymbol{r}=\iint_{S} \nabla(f) \times \nabla(g) \cdot d \boldsymbol{S}
$$

8. Explain carefully why Green's theorem is a special case of Stokes' theorem.
